lunedì 27 luglio 2009

Le comete.

Una cometa è un oggetto celeste relativamente piccolo, simile ad un asteroide ma composto prevalentemente di ghiaccio. Nel Sistema solare, le orbite delle comete si estendono oltre quelle di Plutone. Le comete che entrano nel sistema interno, e si rendono quindi visibili ai nostri occhi, hanno spesso orbite ellittiche. Spesso descritte come "palle di neve sporche", le comete sono composte per la maggior parte di sostanze volatili come biossido di carbonio, metano e acqua ghiacciati, con mescolati aggregati di polvere e vari minerali. La sublimazione delle sostanze volatili quando la cometa è in prossimità del Sole causa la formazione della chioma e della coda.

Si pensa che le comete siano dei residui rimasti dalla condensazione della nebulosa da cui si formò il Sistema solare: le zone periferiche di tale nebulosa sarebbero state abbastanza fredde da permettere all'acqua di trovarsi in forma solida (invece che come gas). È sbagliato descrivere le comete come asteroidi circondati da ghiaccio: i bordi esterni del disco di accrescimento della nebulosa erano così freddi che i corpi in via di formazione non subirono la differenziazione sperimentata da corpi in orbite più vicine al Sole.

CARATTERISTICHE FISICHE

NUCLEO

I nuclei cometari possono variare in dimensione dalle centinaia di metri fino a quaranta e più chilometri e sono composti da roccia, polvere e ghiacci d'acqua e di altre sostanze, comunemente presenti sulla Terra allo stato gassoso, quali monossido di carbonio, anidride carbonica, metano ed ammoniaca.[1] Sono popolarmente descritti come "palle di neve sporca", sebbene osservazioni recenti hanno rivelato forme irregolari[2] e superfici secche di polveri o rocce, suggerendo che i ghiacci siano nascosti sotto la crosta. Le comete sono composte inoltre da una varietà di composti organici: oltre ai gas già menzionati, sono presenti metanolo, acido cianidrico, formaldeide, etanolo ed etano ed anche, forse, molecole più complesse come lunghe catene di idrocarburi e amminoacidi.[3][4][5]

Ironicamente, i nuclei cometari sono tra gli oggetti del Sistema solare più scuri conosciuti: alcuni sono più neri del carbone.[2] La sonda Giotto scoprì che il nucleo della Cometa di Halley riflette circa il 4% della luce con cui viene illuminato,[6] e la sonda Deep Space 1 scoprì che la superficie della cometa Borrelly riflette una percentuale tra il 2,4% e il 3%. Per confronto,[6] il normale asfalto stradale riflette il 7% della luce incidente. Si pensa che il colore scuro derivi dai composti organici che dovrebbero abbondare in superficie: il riscaldamento solare porta via ghiacci ed elementi volatili, lasciando solo molecole pesanti organiche, che tendono ad essere molto scure, come sulla Terra il bitume o il petrolio grezzo. Paradossalmente, il colore scuro del nucleo è il motore della formazione della coda, perché solo così il nucleo riesce ad assorbire il calore necessario ad alimentare il processo.

Nel Sistema solare esterno le comete rimangono in uno stato congelato ed è estremamente difficile o impossibile rilevarle da Terra a cause delle loro ridotte dimensioni. Sono state riportate rilevazioni statistiche da parte del Telescopio spaziale Hubble di nuclei cometari non attivi nella fascia di Kuiper,[7][8] sebbene le identificazioni siano state messe in discussione,[9][10] e non abbiano ancora ricevuto delle conferme indipedenti.

CHIOMA E CODA

Quando una cometa si avvicina al Sistema solare interno, il calore del Sole fa sublimare i suoi strati di ghiaccio più esterni. Le correnti di polvere e gas prodotte formano una grande, ma rarefatta atmosfera attorno al nucleo, chiamata chioma, mentre la forza esercitata sulla chioma dalla pressione di radiazione del Sole, e soprattutto dal vento solare, conducono alla formazione di un enorme coda che punta in direzione opposta al Sole.

Chioma e coda risplendono sia per riflessione diretta della luce incidente, sia in conseguenza della ionizzazione dei gas per effetto del vento solare. Sebbene la maggior parte delle comete sia troppo debole per essere osservata senza l'ausilio di un binocolo o di un telescopio, una manciata ogni decade diventa ben visibile ad occhio nudo. Occasionalmente una cometa può sperimentare una enorme ed improvvisa esplosione di gas e polveri, indicata comunemente con il termine inglese outburst. Nella fase espansiva seguente la chioma può raggiungere dimensioni ragguardevoli. Nel novembre del 2007 per la chioma della Cometa Holmes è stato stimato un diametro di 1,4 milioni di chilometri, pari a quello del Sole [11]. Per un brevissimo periodo, la cometa ha posseduto l'atmosfera più estesa del Sistema solare.

Spesso polveri e gas formano due code distinte, che puntano in direzioni leggermente differenti: la polvere, più pesante, rimane indietro rispetto al nucleo e forma spesso una coda incurvata, che si mantiene sull'orbita della cometa; il gas, più sensibile al vento solare, forma una coda diritta, in direzione opposta al Sole, seguendo le linee del campo magnetico locale piuttosto che traiettorie orbitali. Viste prospettiche da Terra possono determinare configurazioni in cui le due code si sviluppano in direzioni opposte rispetto al nucleo;[12] oppure in cui la coda di polveri, più estesa, appare ad entrambi i lati di esso. In questo casi si dice che la cometa possiede una coda ed un'anti-coda. Un esempio recente ne è stata la Cometa Lulin.

Mentre il nucleo è generalmente inferiori ai 50 km di diametro, la chioma può superare le dimensioni del Sole e sono state osservate code ioniche di estensione superiore ad 1 UA (150 milioni di km).[13] È stato proprio grazie all'osservazione della coda di una cometa, disposta in direzione opposta al Sole, che Ludwig Biermann ha contribuito significativamente alla scoperta del vento solare.[14] Sono comunque estremamente tenui, tanto che è possibile vedere le stelle attraverso di esse.

La coda ionica si forma per effetto fotoelettrico, come risultato dell'azione della radiazione solare ultravioletta incidente sulla chioma. La radiazione incidente è sufficientemente energetica da superare l'energia di ionizzazione richiesta dalle particelle degli strati superiori della chioma, che vengono trasformate così in ioni. Il processo conduce alla formazione di un nuvola di particelle cariche positivamente intorno alla cometa che determina la formazione di una "magnetosfera indotta", che costituisce un ostacolo per il moto del vento solare. Poiché inoltre la velocità relativa tra il vento solare e la cometa è supersonica, a monte della cometa e nella direzione di flusso del vento solare si forma un bow shock, nel quale si raggruppa un'elevata concentrazione degli ioni cometari (chiamati "pick up ions"[15]). Il vento solare ne risulta arricchito di plasma in modo che le linee di campo "drappeggiano" attorno alla cometa formando la coda ionica.[16]
Se l'intensità del vento solare aumenta ad un livello sufficiente, le linee del campo magnetico ad esso associato si stringono attorno alla cometa e ad una certa distanza lungo la coda, oltrepassata la chioma, si verifica la riconnessione magnetica. Ciò conduce an "evento di disconnessione della coda":[16] la coda perde la propria continuità (si "spezza") e la porzione oltre la disconnessione si disperde nello spazio. Sono state osservate diverse occorrenze di tali eventi. Degna di nota è la disconnessione della coda della Cometa Encke avvenuta il 20 aprile del 2007, quando la cometa è stata investita da un'espulsione di massa coronale. L'osservatorio orbitante solare STEREO-A registrò alcune immagini dell'evento, che, montate a costituire una sequenza, sono visibili qui a lato.[17]

L'osservazione della Cometa Hyakutake nel 1996 ha condotto alla scoperta che le comete emettono raggi X.[18] La scoperta destò sorpresa tra gli astronomi, che non avevano previsto che le comete potessero emetterne. Si ritiene che i raggi X siano prodotti dall'interazione tra le comete ed il vento solare: quando ioni con carica elevata attraversano un'atmosfera cometaria, collidono con gli atomi e le molecole che la compongono. Nella collisione, gli ioni catturano uno o più elettroni emettendo nello stesso tempo raggi X e fotoni nel lontano ultravioletto.[19]

ORBITE

La maggior parte delle comete seguono orbite ellittiche molto allungate che le portano ad avvicinarsi al Sole per brevi periodi ed a permanere nelle zone più lontane del Sistema solare per la restante parte. Le comete sono usualmente classificate in base alla lunghezza del loro periodo orbitale.

Sono definite comete di corto periodo quelle che hanno un periodo orbitale inferiore a 200 anni. La maggior parte di esse percorre orbite che giaciono in prossimità del piano dell'eclittica, con lo stesso verso di percorrenza dei pianeti. Tali orbite sono generalmente caratterizzate da un afelio posto nella regione dei pianeti esterni (dall'orbita di Giove in poi). Per esempio, l'afelio dell'orbita della Cometa di Halley si trova poco oltre l'orbita di Nettuno. All'estremo opposto, la Cometa Encke percorre un'orbita che non la porta mai ad oltrepassare quella di Giove. Le comete periodiche sono a loro volta suddivise nella famiglia cometaria di Giove (comete con periodo inferiore ai 20 anni) e nella famiglia cometaria di Halley (comete con periodo compreso tra i 20 ed i 200 anni).
Le comete di lungo periodo percorrono orbite con elevate eccentricità e con periodi compresi tra 200 e migliaia o anche milioni di anni. (Comunque, per definizione, rimangono gravitazionalmente legate al Sole; non è possibile parlare propriamente di periodo, infatti, in riferimento a quelle comete che sono espulse dal Sistema solare in seguito all'incontro ravvicinato con un pianeta). Le loro orbite sono caratterizzate da afelii posti molto oltre la regione dei pianeti esterni ed i piani orbitali presentano una grande varietà di inclinazioni rispetto al piano dell'eclittica.
Le comete extrasolari (in inglese, Single-apparition comets - comete da una singola apparizione) percorrono orbite paraboliche o iperboliche che le portano ad uscire permanentemente dal Sistema solare dopo esser passate una volta in prossimità del Sole.[20]
Alcune fonti utilizzano la locuzione cometa periodica per riferirsi ad ogni cometa che percorra un'orbita chiusa (cioè, tutte le comete di corto periodo e quelle di lungo periodo),[21] mentre altre la utilizzano esclusivamente per le comete di corto periodo.[20] Similmente, sebbene il significato letterale di cometa non periodica sia lo stesso di cometa da una singola apparizione, alcuni lo utilizzano per riferirsi a tutte le comete che non sono "periodiche" nella seconda accezione del termine (cioè, includendo tutte le comete con un periodo superiore a 200 anni).
Comete recentemente scoperte nella fascia principale degli asteroidi (cioè corpi appartenenti alla fascia principale che manifestano attività cometaria durante una parte della loro orbita), percorrono orbite semi-circolari e sono state classificate in una classe a sé.[22][23]
Esistono infine le comete radenti (in inglese sono chiamate sun-grazing - che sfiorano il Sole), dal perielio così vicino al Sole che sfiorano letteralmente la superficie solare. Queste comete hanno breve vita, perché l'intensa radiazione solare le fa evaporare in pochissimo tempo. Sono, inoltre, difficili da osservare, a causa dell'intensa luce solare molto vicina: per osservarle occorre usare strumenti speciali come un coronografo, usare un filtro a banda molto stretta, osservarle durante un eclissi totale di Sole, o osservarle con un satellite.
Da considerazioni sulle caratteristiche orbitali, si ritiene che le comete di corto periodo (decine o centinaia di anni) provengano dalla fascia di Kuiper o dal disco diffuso - un disco di oggetti nella regione transnettuniana - mentre si ritiene che il serbatoio delle comete a lungo periodo sia la ben più distante nube di Oort (una distribuzione sferica di oggetti che costituisce il confine del Sistema solare, la cui esistenza è stata ipotizzata dall’astronomo danese Jan Oort).[24] È stato ipotizzato che in tali regioni distanti, un gran numero di comete orbiti intorno al Sole su orbite quasi circolari. Occasionalmente l'influenza gravitazionale dei pianeti esterni (nel caso degli oggetti presenti nella fascia di Kuiper) o delle stelle vicine[25] (nel caso di quelli presenti nella nube di Oort) sposta uno di questi oggetti su un'orbita altamente ellittica che lo porta a tuffarsi verso le regioni interne del Sistema solare, dove appare come una vistosa cometa. Altre teorie ipotizzate nel passato prevedevano l'esistenza di una compagna sconosciuta del Sole chiamata Nemesi, o un ipotetico Pianeta X. A differenza del ritorno delle comete periodiche le cui orbite sono state determinate durante i transiti precedenti, non è predicibile la comparsa di una nuova cometa tramite questo meccanismo.

Poiché le orbite percorse portano le comete in prossimità dei giganti gassosi, esse sono soggette ad ulteriori perturbazioni gravitazionali. Le comete di corto periodo mostrano la tendenza di regolarizzare il proprio afelio e portarlo a coincidere con il raggio orbitale di uno dei pianeti giganti; un chiaro esempio di questo fenomeno è l'esistenza della famiglia cometaria di Giove. È chiaro inoltre che anche le orbite delle comete provenienti dalla nube di Oort possono essere fortemente alterate dall'incontro con un gigante gassoso. Giove è la principale fonte di perturbazioni, possedendo una massa quasi doppia rispetto a tutti gli altri pianeti messi assieme, oltre al fatto che è anche il pianeta gigante che completa la propria orbita più rapidamente. Queste perturbazioni possono trasferire a volte comete di lungo periodo su orbite con periodi orbitali più brevi (la Cometa di Halley ne è un esempio).

È interessante osservare che l'orbita che viene determinata per una cometa è un'orbita osculatrice, che non tiene conto delle perturbazioni gravitazionali e non a cui può essere soggetta la cometa. Un esempio ne è il fatto che le orbite delle comete di corto periodo rivelano piccole variazioni dei parametri orbitali ad ogni transito. Ancora più significativo è quanto accade per le comete di lungo periodo. Per molte di esse viene calcolata un'orbita parabolica o iperbolica considerando la massa del Sole concentrata nel suo centro; se però l'orbita viene calcolata quando la cometa è oltre l'orbita di Nettuno ed assegnando all'attrattore principale la massa presente nelle regioni più interne del Sistema solare concentrata nel centro di massa del Sistema solare (prevalentemente del sistema composto dal Sole e da Giove), allora la stessa orbita risulta ellittica.[21] La maggior parte della comete paraboliche ed iperboliche appartengono quindi al Sistema solare. Una cometa proveniente dallo spazio interstellare dovrebbe invece essere identificabile da un valore dell'energia orbitale specifica nettamente positivo, corrispondente ad una velocità di attraversamento del Sistema solare interno di poche decine di km/s. Una stima approssimativa del numero di tali comete potrebbe essere di quattro per secolo.

Alcune comete periodiche scoperte nel secolo scorso sono "perdute". Per alcune di esse, le osservazioni non permisero di determinare un'orbita con la precisione necessaria a predirne il ritorno. Di altre, invece, è stata osservata la frantumazione del nucleo. Quello che può essere stato il loro destino sarà descritto in una sezione successiva. Tuttavia, occasionalmente una "nuova" cometa scoperta presenta parametri orbitali compatibili con una cometa perduta. Esempi ne sono le comete 11P/Tempel-Swift-LINEAR, scoperta nel 1869, perduta dopo il 1908 in seguito ad un incontro ravvicinato con Giove e riscoperta nel 2001 nell'ambito del programma automatizzato per la ricerca di asteroidi LINEAR del Lincoln Laboratory,[26] e la 206P/Barnard-Boattini, scoperta nel 1892 grazie all'utilizzo della fotografia, perduta per più di un secolo e riscoperta nel 2008 dall'astronomo italiano Andrea Boattini.

LA MORTE DELLE COMETE

Le comete hanno vita relativamente breve. I ripetuti passaggi vicino al Sole le spogliano progressivamente degli elementi volatili, fino a che la coda non si può più formare, e rimane solo il materiale roccioso. Se questo non è abbastanza legato, la cometa può semplicemente svanire in una nuvola di polveri. Se invece il nucleo roccioso è consistente, la cometa è adesso diventata un asteroide inerte, che non subirà più cambiamenti.

La frammentazione delle comete può essere attribuita essenzialmente a tre effetti: all'urto con un meteorite, ad effetti mareali di un corpo maggiore, quale conseguenza dello shock termico derivante da un repentino riscaldamento del nucleo cometario. Spesso episodi di frantumazione seguono fasi di intensa attività della cometa, indicate col termine inglese outburst. La frammentazione può comportare un aumento della superficie esposta al Sole e può risolversi in un rapido processo di disgregazione della cometa. L'osservazione della frammentazione del nucleo della cometa periodica Schwassmann-Wachmann 3 ha permesso di raccogliere nuovi dati su questo fenomeno [27].


Alcune comete possono subire una fine più violenta: cadere nel Sole oppure entrare in collisione con un pianeta, durante le loro innumerevoli orbite che percorrono il Sistema solare in lungo e in largo. Le collisioni tra pianeti e comete sono piuttosto frequenti su scala astronomica: la Terra incontrò una piccola cometa nel 1908, che esplose nella taiga siberiana causando l'evento di Tunguska, che rase al suolo migliaia di chilometri quadrati di foresta. Nel 1910 la Terra passò attraverso la coda della Cometa di Halley, ma le code sono talmente immateriali che il nostro pianeta non subì il minimo effetto.

Nel 1994, la cometa Shoemaker-Levy 9 passò troppo vicino a Giove e rimase catturata dalla gravità del pianeta. Le forze di marea causate dalla gravità spezzarono il nucleo in una decina di pezzi, i quali poi bombardarono il pianeta nelle settimane seguenti offrendo viste spettacolari ai telescopi di mezzo mondo, da tempo in all'erta per seguire l'evento. Divenne immediatamente chiaro il significato di strane formazioni che si trovano sulla Luna e su altri corpi rocciosi del Sistema solare: catene di piccoli crateri, posti in linea retta uno dopo l'altro. È evidente che una cometa passò troppo vicino al nostro pianeta, ne rimase spezzata, ed andò a finire contro la Luna causando la catena di crateri.

La collisione di una grossa cometa con la Terra sarebbe un disastro immane se avvenisse vicino ad una grande città, perché causerebbe sicuramente migliaia, se non milioni di morti. Fortunatamente, seppur frequenti su scala astronomica, tali eventi sono molto rari su scala umana, e i luoghi densamente abitati della Terra sono ancora molto pochi rispetto alle vaste aree disabitate o coperte dai mari.

PORTATRICI DI VITA?

Sette articoli pubblicati sulla rivista Science (Volume 314, Issue 5806, 2006) da un team di scienziati internazionali, tra i quali sette italiani, annunciano la scoperta nei grani di polvere della cometa Wild 2 di lunghe molecole organiche, di ammine precursori di quelle organiche, come il Dna. La sonda Stardust, dopo aver percorso 4,6 miliardi di km in circa sette anni ha catturato un centinaio di grani ognuno piccolo meno di un millimetro.

I grani sono stati catturati il 2 gennaio 2004 dalla coda della cometa Wild 2 con una speciale filtro in aerogel, una sostanza porosa dall'aspetto lattiginoso. Gli scienziati autori della scoperta, tra cui Alessandra Rotundi dell'Università Parthenope di Napoli, ritengono che questa scoperta sia la conferma della panspermia, la teoria secondo la quale molecole portate dalle comete siano alla base dell'origine della vita sulla Terra. È una teoria che nacque nei primi anni del novecento e confermata dalle osservazioni fatte dalla sonda europea Giotto nel 1986 quando si avvicinò alla cometa Halley.

Ad avvalorare questa ipotesi, vi sono anche i tempi rapidi con la quale è comparsa la vita sulla Terra. In poche decine di milioni di anni la situazione sulla Terra è mutata radicalmente e tempi così rapidi si possono spiegare solo con l'ipotesi che a portare gli ingredienti fondamentali alla vita siano state le comete.

2 commenti:

Anonimo ha detto...

l'idea che le comete possano essere vettori della vita è affascinante ed è affascinante ancor più il fatto, spero di non essere volgare, che tutto ciò rievoca l'immagine dello spermatozoo che si unisce all'ovulo epr dare la vita

TheGenius ha detto...

non sei affatto volgare! quasi poetico oserei dire! comunquealcuni scettici criticano fortemente la teoria. essi pensano che la vita sia nata sulla terra grazie alle fortti piogge che per milioni di anni hanno placato i vulcani della terra primordiae dando vita agli oceani! anch'essa teoria interessante al pari di quella delle comete